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Hyper-spectral microscopic discrimination between
normal and cancerous colon biopsies

Franco Woolfe*, Mauro Maggioni, Gustave Davis, Frederickriéér, Ronald Coifman, and Steven Zucker

Abstract— The spectral study of cancer dates back0 years,
but it is still not known whether spectral measurements suf-
fice to distinguish cancerous from normal tissue. An objectie
approach to that question is designing automatic classifier for
discrimination between these two classes and then estimag
generalization error rates. Previous studies have not estiated
errors adequately: it is not a priori clear whether unseen sgctra
from patients in the algorithm’s test set are sufficiently irdepen-
dent of the training data to provide a fair evaluation. We shav
experimentally that to obtain accurate error estimations,spectra

from unseen patients are necessary. Our results suggest tha

although spectra are not sufficient to distinguish fully betveen
cancerous and normal tissue, some high degree of discrimitian

is possible. This leads us to ask how discriminatory spectta
features should be selected. The features in previous workno
cancer spectroscopy have been chosen according to heuristi
We use the “best basis” algorithm to select a Haar wavelet paet

basis which is optimal for the discrimination task at hand. These
provide interpretable spectral features consisting of cotiguous

wavelength bands. However they are outperformed by feature
which use information from all parts of the spectrum, combined

linearly at random.

|. INTRODUCTION

one estimate of its error rate). By partitioning many times
one can calculate reliable estimates for the true error. rate
Unfortunately, for the general problem of statistical mode
performance estimation “analytical results are difficifliot
impossible” according to [4]. On the other hand, extensive
simulation studies [4], [5] have shown the reliability obes
validation empirically.

The underlying rationale behind testing a classifier on
unseen data is that the unseen data should be independent
of that used for training. For example, suppose a classifier
is trained on spectra from a certain patient and evaluated on
different spectra from the same patient. We call that apgroa
weak cross validatiorBy contrast we use the terstrong cross
validationto refer to training on data from some patients and
testing on different patients. Molckovsky et al. in [6] inttuce
their use of weak cross validation saying that “although
multiple spectra could be obtained from a large polyp, each
Raman spectrum was considered independent”. Other uses of
weak cross validation in the literature on cancer recogmiti
algorithms include [7]-[11]. On the other hand some works
[12]-[14] make use of strong cross validation and yet others

YPER-SPECTRAL imaging for the characterization oflo not specify [15]-[18]. This suggests some researcheys ma

cancer dates back more tha@n years [1]. A natural

be unaware that the distinction between weak and strong cros

question is whether information in the spectrum is sufficie@lidation can be an issue. The question is: are the success
to distinguish cancerous from normal tissue. To answer it Wiates reported by weak cross validation studies believable
can design automatic classifiers that are blind to all oth@gtimates for the error rate on the total population? In this
information. The error rate of the classifier with respect tBaper we answer that question by evaluating our algorithms
the entire population then quantifies the spectral infoimnat using both the strong and weak cross validation frameworks,
which this classifier is able to access and which is useful ff#r comparison. Our results indicate that weak cross vatida
discriminating between cancerous and normal tissue. The ti§ Not sufficient to reliably estimate the out of sample erate
problems are (1) that there might be information availabé t of a classification algorithm: it tends to over estimate sssc
a particular classifier misses and (2) that we can never atelurates.
a classifier on the entire population to find its true erroerat Thus in order to obtain a true lower bound on the useful
The first problem is one of building an optimal classifieSpectral information content of tissue, for the task of eanc
which is the subject of statistical learning (see for exampfecognition, we must use strong cross validation. Our tlass
[2]) and has not been solved in general. Certainly howevégation results using that framework do suggest that some
using a particular classifier will yield a lower bound on thénformation relevant to discrimination between normal and
available information provided that its error rate is estiedl Cancerous colon tissue is available in visible light spedtve
reliably. proceed to ask whether that information is confined to aertai
The second problem, estimating the error rate of a classifiépvelength bands. Is the entire spectrum needed for classifi
given only a finite data sample, has been well studied. TRation or do a smaller number of spectral features suffice to
standard solution is cross-validation, introduced by Stam extractthe available information? Identifying a smallantber
[3]: one partitions the data at random into a training s&f relevant features has the additional advantages that we
(used to build the classifier) and a testing set (used to mbt&Rn decrease computational and image acquisition times sin
data volume will be lower. What is more, the discrimination
ZCelVed o 2999, _ will be more straightforward with only a few features due to
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relevant spectral features for cancer discriminationudel than access to a desktop computer and a hyper-spectral light
[15] which uses linear regression to select spectral basdssaurce which can be attached to a microscope.
features. On the other hand [12] uses AdaBoost, the machin@lovel contributions of this paper include an explicit com-
learning technique, and [13] prefers a genetic algorithrparison of the strong and weak cross-validation frameworks
Other approaches use wavelets for selecting relevantrgpecand use of the best basis algorithm for cancer classificaltion
features, for example [16], [19]. A principled way to sel#td addition this is the first published use of random projetifom
best wavelet basis for a particular discrimination taskively hyper-spectral colon cancer classification. It is the fistlg of
by the best basis algorithm [20]-[22]. It has the advantaggper-spectral imaging of the colon using visible light spe,
of finding the best set of features available for a specifld&E stained biopsies and strong cross validation. Findilg t
discrimination task by searching a wavelet packet tree, arstthe first study of hyper-spectral cancer analysis whickesa
has been used in the hyper-spectral geosensing liter&8}fe [use of Laplacian eigenmaps to take into account the nomlinea
[24]. It provides a principled way to select relevant featir geometry in the design of learning algorithms.
We adopt that method in this paper, with the Haar basis.

The features provided by the “best basis” algorithm with 1. SUMMARY OF OUR APPROACH
Haar wavelets, on our data set, consist of cqntiguous ba_nd%‘his section summarizes section IV
of wavelengths. Thus they have the potential to be give
interpretable information about what parts of the spectanen
important. Other features do not have this property, inipat
lar those obtained from the random projections method [25
[27]. The random projections features consist of random
chosen wavelengths of light. Each feature is spread rando
across the entire spectrum, so it may be counterintuitiaé tl'bO
they should preserve any relevant information at all. Hawev.l.
results in [28] suggest that separation between classedagd Biophot microscope.

prese_rved unde; Zu%h ah randc&m mixing .procedl;]red In OUR e design algorithms to automatically discriminate betwee
experiments we find that the random projection method OUtPgle 1\ rma| and the cancerous biopsies. In order to evalbate t

forms the best Haar wavelet packet basis, as afeatureiselec&rror rates of our algorithms, we use cross validation. This

technique. Thus there is a trade off between 'merpretal?:,l,gnsists of selecting a random subset of the data which is

Used for training and evaluating the algorithm on the reimagin
data. This is repeated many times to obtain an accurate error
. S S . ) tég’timate.Weak cross validatiorconsists in having at least
nigue for classn‘lcatlpn IS empl_oyed. Th|§ IS L"_"p'ac'a” B19€ some spectra in the testing and training sets taken from the
maps [29]-{34], which takes mtq consideration the curvg me patient. It is only an acceptable approach if one assume
geometry of the subsp_ace occupl_ed by the §p_ectra| meas%a'ependence between spectra from the same patient. On
Ewer:ts.. By cpntrast to linear tec;hryques forI5|m|Iar tas]fdl,c[jl the other handstrong cross-validatiorconsists of testing the
dap aclan eigenmaps palramg erize non-pfallﬂar manttolas b orithms on spectra from unseen patients. In order tahest

ata so are more general and more powertul. independence assumption on different spectra from the same

Ou_r _experlmentgl set up is geared towards ease of usep%\fient, we try both frameworks. We find that weak cross-
pracncmg pathologists. qu that reason we use a hype]_tspﬁe validation artificially inflates the algorithm’s succesgerarhis
light source that can eas_lly be a_ttac_hgd t(_) a visible light § because of differences in biopsy preparation betwederdif
croscope [35]. Other s’Fud|es ofd|scr|m|nat|0n betvyeermair ent patients, leading to differences between biopsies dbat
and cancerous cplon tissue use ultraviolet [36] or mfrqi&}g not correlate with diagnosis. For example total spectrafgy
[16], [3t7 ] [38] mm:o-spegtrosctc;]p)l/. thetse ltypEj dc')f' tecms varies from patient to patient but contains no information
are not in general use by pathologisis. In addition, We Ugg being normal versus cancerous (see Figure 1). Testing
biopsies stam_ec_:l by hematoxylin and eosin (H&E), the sted n algorithm on the same patients it was trained on (weak
pathology staining method. On the other hand [15], [16”. [3 ross-validation) means it does not have to normalize feseh

ushg l;]nSta'ng sampleﬁ fobr non-\./l|sl;t|JIe mlcroschoprc t.e(mmq irrelevant differences. Therefore it has an artificiallgieatask
which would not usually be available to a pathologist. ahnd appears to perform better.

This paragraph summarizes the issues addressed by this
paper. We explicitly compare weak and strong cross vabdati o
to determine which is more appropriate for estimating élas$\: Acquisition modes
fication error rates. Strong cross validation allows us torlab  Initially biopsies are imaged at all available wavelengths
from below the information content of visible light spectoat call this approactpassive sensingSince classification accu-
discriminating between normal and cancerous colon bigpsieacies with strong cross validation using entire specte ar
We evaluate two approaches for spectral feature selecti@mcouraging we conclude that there is at least some spagtral
Haar wavelet packet best bases (active sensing) and randormation relevant to cancer detection. This leads us alyur
projections. Throughout we ensure that the methods we de-consider where and how this information is contained @& th
velop can be used by a practicing pathologist, with no mospectra. To study that problem we consider spectral feature

We photograp20 normal and20 cancerous (adenocarci-
noma) human colon biopsies from ov&i0 such biopsies on
tissue micro-array, obtained from the Yale Tissue Miaaar
acility [40]. Different biopsies come from different patits
d the preparation (H&E staining) may vary from patient
patient. The prototype tuned light source [35] generates
mbinations of visible light ati28 different wavelengths.
hese transilluminate the biopsies, passing through armiko

results about important parts of the spectrum (“best bpsi
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Fig. 2. Passive sensing tissue classification of a normaishidall available
wavelengths were used) Cell nuclei are in red, glandultrcgsplasm is in
green and lamina propria is in blue.

Fig. 1. MeanL2 norm of nuclei spectra for each biopsy. There are S|gn|f|cant
differences between patients, due in part to differencesaimple preparation.

But these differences do not correlate with being cancefm squares) or
normal (blue circles). To obtain reliable success ratenegts, classifiers must
be evaluated on unseen patients (strong cross validatathgr than unseen
spectra from known patients (weak cross validation).

selection. In particular we evaluate two classes of splectra
features. The first consists of bands of wavelengths, chimgen
local discriminant bases to be relevant to our discrimorati
task. These features can be measured directly by our instru-
ment [35], which can be programmed to shine exactly those
bands in question, a procedure we @ative sensingWe go

on to consider features consisting of randomly chosen $sibse
of all available wavelengths. Surprisingly, theoreticesults
show that such measurements not only preserve separation
between separable classes [28] and approximate distarfd@s3. Active sensing tissue classification of a normal syofa carefully
between points [26], [41] but also can be used to reconstrlg Sﬁ;ﬁ?ﬁéﬁ;pﬁgfﬁg Ix\’g\r’:fnngt:j |;Vrﬁ|sn;i?g%ngfglgmm red,
the full spectra [27]. Again these features can be measured

directly by our instrument which can be programmed to shine

only those wavelengths of light which have been selected. Wassification tasks “easier” and smaller numbers of festur

call that approactandom sensing lead to lower imaging and computational times. See table II
for some typical imaging time savings.
B. Algorithmic stages To achieve a more objective basis for comparison of results,

o Tissue segmentatiofince histologic changes in the nu-
cleus are a hallmark of cancer, our recognition algorithm
work on nucleic spectra. To identify the locations of nu:
clei, the biopsies are initially segmented into regions cor
responding to three biologically significant tissue classe
These are cell nuclei, glandular cell cytoplasm and lamina
propria cell cytoplasm. For examples see Figures 2, 3 aAd Hadamard spectroscopy
4. To obtain low noise hyper-spectral images in a short period

« Nucleus classificationlaving performed tissue segmentaof time, imaging at all wavelengths, we exploit Hadamard-mul
tion, spectral measurements belonging cell nuclei are ajplexing [42]. Our hyper- spectral device is capable ohif
tomatically extracted. A classification algorithm is treéh ' different wavelengths»;}Y , of light and combinations
on nucleus features which are labeled as normal @fereof. To measure the blopsys response when transilumi

Smulated by taking averages of sets of wavelengths as deede
before inputting to the classification algorithms.

IIl. M ATHEMATICAL METHODS USED

we use the same set of passive measurements for all our
computatlonal experiments. Active and random sensing are

cancerous. Nuclear classification can be either weakly gated by each wavelength the naive approach (called a raster

strongly cross validated. scan) consists in shining one wavelength at a time through
« Biopsy classificatio biopsy is classified as normal if atthe biopsy. However this means that for a given intengity
least some fraction of its nuclei are classified as normgf the light source the energy shone per pattern is aily.
(above). Biopsy classification can be either weakly ofhys the photographic exposure time must be very long for a
strongly cross validated. reasonable signal to noise ratio (SNR): about 1024s pespiop
Identifying small sets of relevant features has many engiould be typical. Instead we use multiplexing to shine pate
neering advantages beyond revealing how the discrimipat@onsisting of many wavelengths at once. kgt € {0,1}
information is arranged inside spectra. These include ngakidenote whether or not light is shone at frequengyin the



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 99, NO. 99, NOVENBER 9999 4

B. Laplacian eigenmaps

In order to classify spectra as to their class of biological
tissue, we need to take into consideration the geometric
relationships between spectral measurements, thoughs of a
points in space. These points lie on or near a curved subspace
(see Figure 5).

10

Fig. 4. Random sensing tissue classification of a normaldyiggandomly
chosen spectral features were used). Cell nuclei are ingleddular cell
cytoplasm is in green and lamina propria is in blue.

eigenvalue
o
gl

i*? pattern. In order to reconstruct physical spectra from our 03 o5 50
measurements, it is important that the vectgssspan the eigenvalue number

whole of RY. Hadamard basis vectors (see [42]) suffice and

have the following carefully designed properties: Fig. 5. The Laplacian eigenvalues of a graph whose nodescargtracted

from tissue spectra (passive sensing). Note how rapidlgigpenvalues decay:
. : . .. the top20 eigenvalues account f&8% of the total energy. This justifies the
« For eachi there areV/2 non zero(y 5 );. So the intensity assumption that the spectra lie on or near a curved subspagé& and our

of the light shining through the biopsy is abaljt2 for use of only the top eigenvectors for embedding.
each of the patterns.
e The set{(¥x)1,...,(vu)n} of vectors is a complete Laplacian eigenmaps [29]-[34] allow us to study the intrin-
(spanning) set foR™N. sic geometry of curved subspaces such as those in question
« The indexi parametrizes rapidity of oscillation: for small(see Figure 9). In particular we measure vecfarg X, C R”
i, (V)] is slowly varying as a function of whereas for which represent spectra and lie on a low dimensiodat
largeri, (1r)] oscillates rapidly as a function gf D) manifold M. We can set up a coordinate system fot
using vectors with onlyl elements. Thus we can represent
Here more light is shone per pattern and we can expebt position of each data point; by only d coordinates
less noisy measurements, while still spannRy (that is, {w;}M, ¢ R? rather thanD, which can lead to massive
the transform is still invertible). However, because nallyr savings in storage, computation and data acquisition time.
occurring spectra are gradual functions of frequency, theTo achieve such a parametrization, consider the Laplacian
response to gradually varying patterns; for small 7) will  operator on the manifoldA. The idea is that thé coordinates
be higher than for rapidly varying patterns; i.e. the sigwal of point: should be the values of the tapLaplacian eigen-
noise ratio decreases as a function.ofo ensure a minimum vectors at point. One way of understanding this approach is
SNR for all measurements, an exposure time long enougtat it optimally preserves distances between nearby gaint
to accommodate the most rapidly varying pattern must be andv; are close together in th® dimensional space it is
used. In that case the SNR for the lowest frequency pattet@sirable that their images ih dimensions remain close. In
will be higher than we need. To remedy this inefficiency wa sense which can be made precise, the Laplacian embedding
use permuted Hadamard vectors, which come from applyipgeserves local distances as well as possible [29]. Another
the same random permutation to the elements of each bagisy of understanding the Laplacian embedding is via heat
vector ;. These allow us to maximize the SNR uniformlyiffusion. Assume that the manifold conducts heat, but is
across patterns shone. In more detail we build a singkesulated from the remainder of the high dimensional space.
random bijectionm : {1,...,N} — {1,...,N} and define Consider a point source of heat located at one of the points
(Vri)) = ()", We compute the permutation once angn the manifold. The time taken for that heat to diffuse to
use that shuffling in all our measurements. After shufflingther points on the manifold is related to the distances &etw
all Hadamard basis vectors have about the same frequencyhafse points in the lowl dimensional embedding space. This
oscillation. Of course, the change of variablgust induces an diffusion metric is robust to noisy data since heat will not
orthogonal transformation betweé() ), } and{(v¥rr )}, SO travel quickly between points on the manifold unless theee a
the permuted Hadamard transform is also still invertiblsoA many paths connecting them. So the creation or deletion of
the size of all the collected coefficients is roughly consian. some small number of paths, due to measurement noise in the
So the exposure time can be kept constant for all the patterfis;} 2, will not strongly affect the distances between points
We choose the exposure time just under the saturation leirethe low d dimensional embedding space.
of the CCD. (In our experiments the exposure time \2a8 In order to compute the low dimensional embedding coor-
ms andN = 128). dinates of data, it is necessary to approximate the contisiuo
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Laplacian operator by a matrix. Define the Laplacian matsix across different biopsies. There are significant diffeesnc

L =I—AwhereA = (a; ;)M anda; ; = exp(—||v;—v;||/¢), between biopsies which should be ignored, for example due

before normalization. Herd is called the adjacency matrix. Into different uptake of the stain, slightly different focusda

fact, we used a Laplace-Beltrami normalization [43] forThe lighting settings in the microscope (see Figure 1).

advantage of that normalization is invariance to the sampli The tissue segmentation algorithms are supervised: wé labe

density of the points on the manifold. Now diagonalize a subset of the locations from three biopsies according to

and letw;(m) be thei'® coordinate of then'™ eigenvector tissue class. Given these labeled points, the algorithigrass

(form =1,...,d). For any particular data set, the values oé class to each unlabeled location. Measurements are made at

d and e are not known a priori and need to be determineitie labeled points in either passive, active or random Bgnsi

experimentally. mode. The measurements made are given to the algorithm in
section IV-A.2. For the results, see Figures 2, 3 and 4.

C. Local discriminant bases 1) Measurements:

o Passive sensing’he input to the tissue segmentation

algorithm in the next section is the full spectra - that is

the response tdv different wavelengths of light at each

location in the biopsies (see Figure 6).

Despite the considerable savings in imaging time obtained
through use of Hadamard spectroscopy (section IlI-A), it
still takes32s to acquire a hyper-spectral image of a single
biopsy. That is because Hadamard spectroscopy is intended
to capture images at all available frequencies. We show that
faster acquisition times can be obtained by only measuring
the response at those frequencies which are relevant to the
discrimination task at hand. We call this approach active
sensing which we implement using local discriminant bases
(LDB) of Coifman and Saito [20]-[22].

Given labeled sets of high dimensional training data points
the method finds a small number of directions such that pro-
jecting the data onto those directions preserves the sapara
between the classes. The high dimensional training points
in question are physical spectra in this situation. Praject ‘ ‘
the data onto a small number of directions corresponds to 400 500 600 700

- . . wavelength (nm)
shining a small subset of the available wavelengths whiek ha
been chosen specifically with the goal preserving separatigy . A colon transmittance spectrum betwekionm and700nm. These
between classes. A classifier is then learned in the prajecteeasurements are used by the “passive” algorithms.
lower dimensional space corresponding to the small number
of measurements made. This leads to faster image acqnisitioe Active sensinglVe use the LDB algorithm (see section

normalized intensity
© o o
> O ®

o
[N

and data-analysis times. I1I-C and Figure 7) to findd features that discriminate
The search for features in high dimensional spaces is no- among the full spectra of different tissue classes in the
toriously difficult. LDB performs dimensionality reductidoy training set. The features are optimal subject to being
searching sub-optimal projections among hierarchicakji-w the firstd vectors of a Haar packet basis faif'. These
organized dictionaries of wavelet or Fourier packets. &lzee responses of the tissue to these featudesymbers per

fast algorithms with to perform such a search and efficiently ~location in the biopsies) are subsequently classified using
compute the projections onto ensembles of these patters. W the tissue segmentation algorithm in the next section.
use a version of LDB that searches arbitrary Haar packet de= Random sensingve also make only/ spectral measure-
compositions. Note the LDB method is fundamentally limited ~ ments, instead ofV. However the measurements made
by the constraint that the projections available in its gear ~ €ach consist of shining a random subset of the available
space come from Haar packet decompositions. Nonetheless Wavelengths (see Figure 8). Again, thelsmeasurements
we find it can reduce imaging time with little subsequent loss ~ Per location are input into the following algorithm.

of classification accuracy. 2) Algorithm: We use a nonlinear classifier that takes
advantage of the curved geometry of the measurement space
IV. ALGORITHMS using Laplacian eigenmaps (see Figure 9 and section IlI-

B) as follows. Supposd(z,y) € RP is the measurement
made at a locatioifiz, y), by either passive, active or random
&bnsing. Lets = {s:}?5, be the measurements in5aby
neighborhood aboutz,y). S is used to calculaté local
atistics which capture variation neér,y), assuming that
$Ocontains realizations of the same random variable. The

2. The M&E stai din slid ion diff . local statistics are the top eigenvalues;}*_; of the local
propria. The stain used in slide preparation differatets .. - i~ ~o matrix

between nuclei and other tissue components, which makes the .
task tractable. The major difficulty is to achieve consisten C= Z (58 =) (si—p),

A. Tissue segmentation

Since histologic changes in cell nuclei occur with the ons
of cancer, our spectral cancer discrimination algorithneskw 5
on nuclei. In order to locate nuclei patches they begin @f
segmenting the spectral measurements into three classes
responding to cell nuclei, glandular cell cytoplasm anditem
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e Fig. 9. Laplacian eigenmaps allow us to perform classificatf data on a
- curved manifold. Distances between unseen points andeldieining points
e are measured in curvilinear coordinates along the manifatider than in the
= D dimensional ambient space.
£
)
c
B. Classification of Nuclei
0 e . .
450 500 550 600 650 700 Nuclear classification can be either weakly or strongly ros
wavelength (nm) validated (see section II). That is the nuclear classifier lwa

trained on all biopsies (weak) or trained on some and ewvaduat
on others (strong).

1) Passive and random sensindn passive and random
sensing, once we have detected where nuclei are locatsd, the
are classified by partial least squares regression (PLSR, se
[2], [47]-[51]). The PLSR algorithm is given full spectrarfo
ssive sensing £8 measurements at each location) and only
random measurements per location for random sensing. We
_ k ) ) ~uselbs latent vectors in the PLSR algorithm.

The choice of & by 5 neighborhood is motivated by this 5y Active sensingin active sensing, once we have detected
being small enough to fit inside most cell nuclei. The spatiglyare nuclei are located, we make use of a second set of
characteristics considered are at such a low scale as not9,surements which have been chosen by the LDB algorithm
capture information about histological structures. E8aly (section 111-C) to discriminate between normal and canasro

they provide a very local measure of spectral variation 8boi{,cjei. Given the measurements we rui(a-nearest neigh-

a point. bors classifier [2] to assign one of the two classes.
The physical and biological spectral compositions can be

modeled by constraining the set of feature vectors to lieron o o o

near a manifold\ & RP+* whose intrinsic dimensionality is C. Classification of biopsies

less thanD + k. So we construct an empirical parametrization To classify a biopsy, we collect betweefi and 60 nuclei.

of the point cloud by using Laplacian eigenmaps (see sectidfe find that selecting spectra from near the centers of nu-
[11-B). This nonlinear map fronRP”** to R”, which we learn clei increases confidence that the spectra really are myclei
on the training spectra, is extended to all other spectral(in thus improving diagnostic efficiency (when cross validatin
other biopsies) by the Nystrom extension technique [48}[ strongly). The number of nuclei selected varies from bidpsy
To classify a new spectrum, we compute the local spatial staiepsy according to availability and confidence the aldwnit
tistics, assemble the feature vector, apply Nystrom esiéerto  has in the locations really being nucleic. Each nucleus is
deduce its low dimensional embedding coordinateR’inand classified as in section IV-B. Each biopsy is classified as
use al0-nearest neighbor classifier [2] in thedimensional cancerous if at least some fraction of its nuclei spectra are
diffusion space. classified as cancerous. It is possible to vary the sengitivi

Fig. 8. The measurements used by the random sensing lealgagthms
are sums of transmittances at randomly chosen wavelengths.

where 1 is the mean spectrum of. Then we form the
feature vector atz,y): f(z,y) = [u',01,...,04] " € RPTE, a
The feature vector is normalized by linearly mapping ea%3
coordinate into the intervgD, 1].
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TABLE |

and specificity of our algorithms by altering that policyy fo PARAMETERS USED IN THE ALGORITHMS(SEE IV-A.2),

example conservatively classifying a biopsy as canceffoats i

least10% of nuclei spectra are deemed cancerous (Figures 11 acquisition mode| D K | n
and 10). passive 128 | 20 | 20
active 8 8 4
random 16 16 | 8

V. EXPERIMENTS

A micro-array was obtained from the Yale Tissue micro-

array facility, containing normal and cancerous human m:olc?nq again }‘or nuclear cla_lssmcatlon. On the other hand the
biopsies stained with H&E. Each biopsy comes from a gifictive sensing method relies on being able to choose rdlevan

ferent patient and biopsy preparation may vary from patieme"jls_u_rememS for each task separately. For _the task ofybiops
to patient. We considet0 such biopsies20 normal biopsies classification as a whole the random and active methods have

and20 cancerous carcinomas. One of us (Dr Gustave L Davi]s(? measurements each.
M.D., a board-certified pathologist) photographed the siep
after confirming the diagnoses and evaluating adequacy of VI. RESULTS

each biopsy for selection. _ Tables 1l and 1l show the strongly cross validated results
The prototype tuned light source [35] can genet@tlight  of the cancer recognition and tissue segmentation stages of
frequencies, between 440 nm and 700 nm, with a wavelengffa aigorithm, respectively. In particular, table 11l shothe
resolution of about 6 nm. A fiber optic cable connects thgsrcentage of the locations automatically recognized atenu
light source to a Nikon Biophot microscope. We work ahich are indeed nuclei, as verified by a pathologist.
400X magnification. The instrument is flexible in that it can Tpe algorithms described above classify a biopsy as can-
transilluminate a sample with a combination of wavelengths cerqys if at least some fraction of its nuclei are classified a
the same time. Itis a prototype obtained from Plain Sights Sy.ancerous. That fraction can be varied, to produce Figues 1
tems Inc., Hamden, CT. Related hyper-spectral light s&Urcg,g 11, for the case of random sensing. Analogous Figures
are available commercially. For example Tidal Photonias, In fo; active and passive sensing look almost identical. These
Vancouver, Canada [52] produces a hyper-spectral lightt8Ourigyres show robustness of the schemes proposed when the
that can also be configured to shine combinations of ligfiireshold parameter is varied. In addition Figure 11 shows t
of different frequencies. It has been used to constructi@qe off hetween sensitivity and specificity. The area unde
hyper-spectral bronchoscope in [53]. Cambridge Researdh g receiver operator characteristic (ROC) curve is a nreasu

Instrumentation Inc., Woburn, MA [54] sells a liquid cryistangf ropystness of a test, and must be betwe@emd 1. For our
tunable filter which has been used for cytological analy$is @oc curves this area is abow®.

bladder cancer in [55]. In addition Spectral Dimensions,,In
Olney, MD, [56] produces microscopes equipped with hyper-
spectral light sources.

We take advantage of the flexibility to shine combinations
of light wavelengths in three different ways. In passivessen
we acquire the image at all available wavelengths by shining
randomized Hadamard patterns which minimize the data ac-
quisition time subject to the signal to noise ratio beinglaeh
level we choose (see section IlI-A for more details). In @nd
sensing we shine randomly chosen wavelengths (see section
IV-A.1). In active sensing we shine wavelengths which have
been chosen to be particularly relevant to the discrimomati 0‘2 0‘4 0‘6 0‘8
task at hand (see section IlI-C) out of a Haar wavelet packet ' threshhold '
tree.

A single data cube is collected for each biopsy. It is a sBig. 10.  Diagnostic efficiency as a function of the threshlattion of
of D images,(1;}1,. Each image has sizt9l by 652 pixels SPects. T s e aclon of uckes o by e be ol
which are the response of the biopsy when transilluminatgglnt on the graph is the average diagnostic efficiency dverruns of strong
by a particular combination of wavelengths of light. cross-validation on the data set4 patients. The optimal threshold (s5.

The number of measurements made) (and number of
spatial features calculated:)( for the tissue segmentation For the weakly cross validated task (testing on the same
algorithm (section 1V-A.2) are given in table I. For the tiss patients as the algorithm trains on) we achieve almost gerfe
segmentation stage, the active sensing algorithm is givesults as in [6], [8] which also use weak cross validation.
8 measurements which is fewer than the random sensi@yr diagnostic efficiency i89%. For the harder task of strong
algorithm which has access t® measurements. This is incross-validation (testing on unseen patients), our tisdas-
order to make the final comparison between success rates fification results are ned00%. For strongly cross validated
The reason is that the random sensing method re-uses the seameer recognition, we achiew% diagnostic efficiency in
random measurements twice: once for tissue segmentatp@ssive sensing mode, that is when the algorithm has access

o
0

o
o

diagnostic efficiency
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TABLE Il
CANCER DETECTION SUCCESS RATES

sensing mode| cross validation type| diagnostic efficiency (%)| sensitivity (%) | specificity (%) | time per biopsy (s)
passive weak 99 99 100 32
passive strong 85 7 94 32
active strong 82 85 78 4
random strong 85 78 92 4
TABLE Il

NUCLEI DETECTION SUCCESS RATESSTRONG CROSS VALIDATION

sensing mode| success rate (%)
passive 100
active 99
random 100

packets. Random sensing has no such restriction. In additio
active sensing is handicapped in that it cannot use the same
measurements twice for different tasks. The measurements
made are specific to either tissue segmentation or nuclear
classification. To make the comparison between random and
active fair, both are given access to the same number of total
measurements. Thus for each sub-task (tissue segmentation
and nuclear classification) the active algorithms have sscce

to fewer measurements. A priori it is not obvious which of
these methods will perform best for a particular applicatio

0.2 04 0.6 0.8 In this case the benefits of random sensing outweigh those of
1-sensitivity active.

Fio 11 Recel or characteristic (ROC orrand , We have successfully designed algorithms for the dis-
Pl L1, Recetver opeator characterste (ROC) cunefertadon) 1 crimination of normal and cancerous colon biopsies given
catching all true positives. True positive rate, or speitjfigs plotted on the little more than materials in general use by pathologists. |
y-axis as a function ol —sensitivity, or false alarm rate, on theaxis. The particular we have used H&E stained biopsies and a visible
f;r?wl;r;,‘ieg;:;esgCancdu{\"?n'sthﬁlssggiairtdi;f_ ooure of robusthestet, and light microscope with a hyper-spectral light source ateath

to it as described in [35]. We recognize the importance of

keeping imaging times low. These relatively standard nieglter
to all spectral bands. This requires an acquisition timg2sf and ambitious goals have necessitated the use of sophestica
per biopsy. For active and random sensing, the measurena@gbrithms which nonetheless run on a standard desktop com-
time per data cube falls tés. The diagnostic efficiency only puter. The algorithms are specifically tailored to the tasks
decreases t82% for active and remains &5% for random hand. In this way we have achieved strongly cross validated
sensing with strong cross validation. The features chosendiagnostic efficiencies o85% which have only previously
random slightly, but consistently, outperform those cindsg been available with sophisticated imaging equipment, for

e o @9
> o o

specificity

o
N

LDB (active sensing). colon cancer [15], [39].
One problem with our method is that cancer only develops
VII. CONCLUSIONS AND FURTHER WORK in the glandular cells. However we use both glandular and

An example of a lower bound on the information conterf@mina propria cell nuclei in training the cancer recogmiti
is that in at leas85% of cases spectral information alone?lgorithms (local discriminant bases and partial leastseg).
is sufficient to discriminate between normal and cancerohg€ reason for this is that we have thus far been unable to tell
biopsies. Thus the question arises as to what form this gpecthe difference between these two populations of cell nuclei
information takes. Are the entire spectra needed in order @tomatically. In the future we hope to achieve this diserim
obtain this classification accuracy? The answer is no: usifffiion using immunoperoxidase markers for epithelium and
only 16 spectral measurements are sufficient in order to obtdf/kocytes. These stains will facilitate the task of autboadly
that success rate. differentiating between lamina propria nuclei and glaadul
Of the two classes of features we use, random measureméhtglei.
outperform spectral band features selected by LDB (active
sensing). One might have expected the reverse since ireactiv ACKNOWLEDGMENTS
sensing the algorithm makes a choice about which pattelhs wi We thank Dr. Boaz Nadler for interesting discussions on the
be particularly helpful. On the other hand, the set of caaigid application of the PLSR method.
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