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Hyper-spectral microscopic discrimination between
normal and cancerous colon biopsies

Franco Woolfe*, Mauro Maggioni, Gustave Davis, Frederick Warner, Ronald Coifman, and Steven Zucker

Abstract— The spectral study of cancer dates back50 years,
but it is still not known whether spectral measurements suf-
fice to distinguish cancerous from normal tissue. An objective
approach to that question is designing automatic classifiers for
discrimination between these two classes and then estimating
generalization error rates. Previous studies have not estimated
errors adequately: it is not a priori clear whether unseen spectra
from patients in the algorithm’s test set are sufficiently indepen-
dent of the training data to provide a fair evaluation. We show
experimentally that to obtain accurate error estimations,spectra
from unseen patients are necessary. Our results suggest that
although spectra are not sufficient to distinguish fully between
cancerous and normal tissue, some high degree of discrimination
is possible. This leads us to ask how discriminatory spectral
features should be selected. The features in previous work on
cancer spectroscopy have been chosen according to heuristics.
We use the “best basis” algorithm to select a Haar wavelet packet
basis which is optimal for the discrimination task at hand. These
provide interpretable spectral features consisting of contiguous
wavelength bands. However they are outperformed by features
which use information from all parts of the spectrum, combined
linearly at random.

I. I NTRODUCTION

H YPER-SPECTRAL imaging for the characterization of
cancer dates back more than50 years [1]. A natural

question is whether information in the spectrum is sufficient
to distinguish cancerous from normal tissue. To answer it we
can design automatic classifiers that are blind to all other
information. The error rate of the classifier with respect to
the entire population then quantifies the spectral information
which this classifier is able to access and which is useful for
discriminating between cancerous and normal tissue. The two
problems are (1) that there might be information available that
a particular classifier misses and (2) that we can never evaluate
a classifier on the entire population to find its true error rate.
The first problem is one of building an optimal classifier,
which is the subject of statistical learning (see for example
[2]) and has not been solved in general. Certainly however,
using a particular classifier will yield a lower bound on the
available information provided that its error rate is estimated
reliably.

The second problem, estimating the error rate of a classifier
given only a finite data sample, has been well studied. The
standard solution is cross-validation, introduced by Stone in
[3]: one partitions the data at random into a training set
(used to build the classifier) and a testing set (used to obtain
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one estimate of its error rate). By partitioning many times
one can calculate reliable estimates for the true error rate.
Unfortunately, for the general problem of statistical model
performance estimation “analytical results are difficult,if not
impossible” according to [4]. On the other hand, extensive
simulation studies [4], [5] have shown the reliability of cross
validation empirically.

The underlying rationale behind testing a classifier on
unseen data is that the unseen data should be independent
of that used for training. For example, suppose a classifier
is trained on spectra from a certain patient and evaluated on
different spectra from the same patient. We call that approach
weak cross validation. By contrast we use the termstrong cross
validation to refer to training on data from some patients and
testing on different patients. Molckovsky et al. in [6] introduce
their use of weak cross validation saying that “although
multiple spectra could be obtained from a large polyp, each
Raman spectrum was considered independent”. Other uses of
weak cross validation in the literature on cancer recognition
algorithms include [7]–[11]. On the other hand some works
[12]–[14] make use of strong cross validation and yet others
do not specify [15]–[18]. This suggests some researchers may
be unaware that the distinction between weak and strong cross
validation can be an issue. The question is: are the success
rates reported by weak cross validation studies believable
estimates for the error rate on the total population? In this
paper we answer that question by evaluating our algorithms
using both the strong and weak cross validation frameworks,
for comparison. Our results indicate that weak cross validation
is not sufficient to reliably estimate the out of sample errorrate
of a classification algorithm: it tends to over estimate success
rates.

Thus in order to obtain a true lower bound on the useful
spectral information content of tissue, for the task of cancer
recognition, we must use strong cross validation. Our classi-
fication results using that framework do suggest that some
information relevant to discrimination between normal and
cancerous colon tissue is available in visible light spectra. We
proceed to ask whether that information is confined to certain
wavelength bands. Is the entire spectrum needed for classifi-
cation or do a smaller number of spectral features suffice to
extract the available information? Identifying a smaller number
of relevant features has the additional advantages that we
can decrease computational and image acquisition times since
data volume will be lower. What is more, the discrimination
will be more straightforward with only a few features due to
lower dimensionality of the problem (alleviating the “curse
of dimensionality” [2]). Previous studies on how to select
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relevant spectral features for cancer discrimination include
[15] which uses linear regression to select spectral bands as
features. On the other hand [12] uses AdaBoost, the machine
learning technique, and [13] prefers a genetic algorithm.
Other approaches use wavelets for selecting relevant spectral
features, for example [16], [19]. A principled way to selectthe
best wavelet basis for a particular discrimination task is given
by the best basis algorithm [20]–[22]. It has the advantage
of finding the best set of features available for a specific
discrimination task by searching a wavelet packet tree, and
has been used in the hyper-spectral geosensing literature [23],
[24]. It provides a principled way to select relevant features.
We adopt that method in this paper, with the Haar basis.

The features provided by the “best basis” algorithm with
Haar wavelets, on our data set, consist of contiguous bands
of wavelengths. Thus they have the potential to be give
interpretable information about what parts of the spectrumare
important. Other features do not have this property, in particu-
lar those obtained from the random projections method [25]–
[27]. The random projections features consist of randomly
chosen wavelengths of light. Each feature is spread randomly
across the entire spectrum, so it may be counterintuitive that
they should preserve any relevant information at all. However
results in [28] suggest that separation between classes is indeed
preserved under such a random mixing procedure. In our
experiments we find that the random projection method outper-
forms the best Haar wavelet packet basis, as a feature selection
technique. Thus there is a trade off between interpretable
results about important parts of the spectrum (“best basis”)
and higher classification accuracy (random projections).

Having acquired spectral measurements, a nonlinear tech-
nique for classification is employed. This is Laplacian eigen-
maps [29]–[34], which takes into consideration the curved
geometry of the subspace occupied by the spectral measure-
ments. By contrast to linear techniques for similar tasks [15],
Laplacian eigenmaps parameterize non-planar manifolds of
data so are more general and more powerful.

Our experimental set up is geared towards ease of use by
practicing pathologists. For that reason we use a hyper-spectral
light source that can easily be attached to a visible light mi-
croscope [35]. Other studies of discrimination between normal
and cancerous colon tissue use ultraviolet [36] or infrared[6],
[16], [37], [38] micro-spectroscopy: these types of techniques
are not in general use by pathologists. In addition, we use
biopsies stained by hematoxylin and eosin (H&E), the standard
pathology staining method. On the other hand [15], [16], [39]
use unstained samples for non-visible microscopic techniques,
which would not usually be available to a pathologist.

This paragraph summarizes the issues addressed by this
paper. We explicitly compare weak and strong cross validation
to determine which is more appropriate for estimating classi-
fication error rates. Strong cross validation allows us to bound
from below the information content of visible light spectrafor
discriminating between normal and cancerous colon biopsies.
We evaluate two approaches for spectral feature selection:
Haar wavelet packet best bases (active sensing) and random
projections. Throughout we ensure that the methods we de-
velop can be used by a practicing pathologist, with no more

than access to a desktop computer and a hyper-spectral light
source which can be attached to a microscope.

Novel contributions of this paper include an explicit com-
parison of the strong and weak cross-validation frameworks
and use of the best basis algorithm for cancer classification. In
addition this is the first published use of random projections for
hyper-spectral colon cancer classification. It is the first study of
hyper-spectral imaging of the colon using visible light spectra,
H&E stained biopsies and strong cross validation. Finally this
is the first study of hyper-spectral cancer analysis which makes
use of Laplacian eigenmaps to take into account the nonlinear
geometry in the design of learning algorithms.

II. SUMMARY OF OUR APPROACH

This section summarizes section IV.
We photograph20 normal and20 cancerous (adenocarci-

noma) human colon biopsies from over200 such biopsies on
a tissue micro-array, obtained from the Yale Tissue Microarray
facility [40]. Different biopsies come from different patients
and the preparation (H&E staining) may vary from patient
to patient. The prototype tuned light source [35] generates
combinations of visible light at128 different wavelengths.
These transilluminate the biopsies, passing through a Nikon
Biophot microscope.

We design algorithms to automatically discriminate between
the normal and the cancerous biopsies. In order to evaluate the
error rates of our algorithms, we use cross validation. This
consists of selecting a random subset of the data which is
used for training and evaluating the algorithm on the remaining
data. This is repeated many times to obtain an accurate error
estimate.Weak cross validationconsists in having at least
some spectra in the testing and training sets taken from the
same patient. It is only an acceptable approach if one assumes
independence between spectra from the same patient. On
the other handstrong cross-validationconsists of testing the
algorithms on spectra from unseen patients. In order to testthe
independence assumption on different spectra from the same
patient, we try both frameworks. We find that weak cross-
validation artificially inflates the algorithm’s success rate. This
is because of differences in biopsy preparation between differ-
ent patients, leading to differences between biopsies thatdo
not correlate with diagnosis. For example total spectral energy
varies from patient to patient but contains no information
about being normal versus cancerous (see Figure 1). Testing
an algorithm on the same patients it was trained on (weak
cross-validation) means it does not have to normalize for these
irrelevant differences. Therefore it has an artificially easier task
and appears to perform better.

A. Acquisition modes

Initially biopsies are imaged at all available wavelengths;
call this approachpassive sensing. Since classification accu-
racies with strong cross validation using entire spectra are
encouraging we conclude that there is at least some spectralin-
formation relevant to cancer detection. This leads us naturally
to consider where and how this information is contained in the
spectra. To study that problem we consider spectral feature
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Fig. 1. MeanL2 norm of nuclei spectra for each biopsy. There are significant
differences between patients, due in part to differences insample preparation.
But these differences do not correlate with being cancerous(red squares) or
normal (blue circles). To obtain reliable success rate estimates, classifiers must
be evaluated on unseen patients (strong cross validation) rather than unseen
spectra from known patients (weak cross validation).

selection. In particular we evaluate two classes of spectral
features. The first consists of bands of wavelengths, chosenby
local discriminant bases to be relevant to our discrimination
task. These features can be measured directly by our instru-
ment [35], which can be programmed to shine exactly those
bands in question, a procedure we callactive sensing. We go
on to consider features consisting of randomly chosen subsets
of all available wavelengths. Surprisingly, theoretical results
show that such measurements not only preserve separation
between separable classes [28] and approximate distances
between points [26], [41] but also can be used to reconstruct
the full spectra [27]. Again these features can be measured
directly by our instrument which can be programmed to shine
only those wavelengths of light which have been selected. We
call that approachrandom sensing.

B. Algorithmic stages

• Tissue segmentationSince histologic changes in the nu-
cleus are a hallmark of cancer, our recognition algorithms
work on nucleic spectra. To identify the locations of nu-
clei, the biopsies are initially segmented into regions cor-
responding to three biologically significant tissue classes.
These are cell nuclei, glandular cell cytoplasm and lamina
propria cell cytoplasm. For examples see Figures 2, 3 and
4.

• Nucleus classificationHaving performed tissue segmenta-
tion, spectral measurements belonging cell nuclei are au-
tomatically extracted. A classification algorithm is trained
on nucleus features which are labeled as normal or
cancerous. Nuclear classification can be either weakly or
strongly cross validated.

• Biopsy classificationA biopsy is classified as normal if at
least some fraction of its nuclei are classified as normal
(above). Biopsy classification can be either weakly or
strongly cross validated.

Identifying small sets of relevant features has many engi-
neering advantages beyond revealing how the discriminatory
information is arranged inside spectra. These include making

Fig. 2. Passive sensing tissue classification of a normal biopsy (all available
wavelengths were used). Cell nuclei are in red, glandular cell cytoplasm is in
green and lamina propria is in blue.

Fig. 3. Active sensing tissue classification of a normal biopsy (a carefully
chosen subset of relevant wavelengths was used). Cell nuclei are in red,
glandular cell cytoplasm is in green and lamina propria is inblue.

classification tasks “easier” and smaller numbers of features
lead to lower imaging and computational times. See table II
for some typical imaging time savings.

To achieve a more objective basis for comparison of results,
we use the same set of passive measurements for all our
computational experiments. Active and random sensing are
simulated by taking averages of sets of wavelengths as needed,
before inputting to the classification algorithms.

III. M ATHEMATICAL METHODS USED

A. Hadamard spectroscopy

To obtain low noise hyper-spectral images in a short period
of time, imaging at all wavelengths, we exploit Hadamard mul-
tiplexing [42]. Our hyper-spectral device is capable of shining
N different wavelengths{νi}

N
i=1 of light and combinations

thereof. To measure the biopsy’s response when transillumi-
nated by each wavelength the naive approach (called a raster
scan) consists in shining one wavelength at a time through
the biopsy. However this means that for a given intensityI
of the light source the energy shone per pattern is onlyI/N .
Thus the photographic exposure time must be very long for a
reasonable signal to noise ratio (SNR): about 1024s per biopsy
would be typical. Instead we use multiplexing to shine patterns
consisting of many wavelengths at once. Letψj

i ∈ {0, 1}
denote whether or not light is shone at frequencyνj in the
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Fig. 4. Random sensing tissue classification of a normal biopsy (randomly
chosen spectral features were used). Cell nuclei are in red,glandular cell
cytoplasm is in green and lamina propria is in blue.

ith pattern. In order to reconstruct physical spectra from our
measurements, it is important that the vectorsψi span the
whole of RN . Hadamard basis vectors (see [42]) suffice and
have the following carefully designed properties:

• For eachi there areN/2 non zero(ψH)j
i . So the intensity

of the light shining through the biopsy is aboutI/2 for
each of the patterns.

• The set{(ψH)1, . . . , (ψH)N} of vectors is a complete
(spanning) set forRN .

• The indexi parametrizes rapidity of oscillation: for small
i, (ψH)j

i is slowly varying as a function ofj whereas for
larger i, (ψH)j

i oscillates rapidly as a function ofj.

Here more light is shone per pattern and we can expect
less noisy measurements, while still spanningRN (that is,
the transform is still invertible). However, because naturally
occurring spectra are gradual functions of frequency, the
response to gradually varying patterns (ψi for small i) will
be higher than for rapidly varying patterns; i.e. the signalto
noise ratio decreases as a function ofi. To ensure a minimum
SNR for all measurements, an exposure time long enough
to accommodate the most rapidly varying pattern must be
used. In that case the SNR for the lowest frequency pattern
will be higher than we need. To remedy this inefficiency we
use permuted Hadamard vectors, which come from applying
the same random permutation to the elements of each basis
vector ψi. These allow us to maximize the SNR uniformly
across patterns shone. In more detail we build a single
random bijectionm : {1, . . . , N} → {1, . . . , N} and define
(ψRH)j

i = (ψH)
m(j)
i . We compute the permutation once and

use that shuffling in all our measurements. After shuffling,
all Hadamard basis vectors have about the same frequency of
oscillation. Of course, the change of variablem just induces an
orthogonal transformation between{(ψH)i} and{(ψRH)i}, so
the permuted Hadamard transform is also still invertible. Also
the size of all the collected coefficients is roughly constant in i.
So the exposure time can be kept constant for all the patterns.
We choose the exposure time just under the saturation level
of the CCD. (In our experiments the exposure time was250
ms andN = 128).

B. Laplacian eigenmaps

In order to classify spectra as to their class of biological
tissue, we need to take into consideration the geometric
relationships between spectral measurements, thought of as
points in space. These points lie on or near a curved subspace
(see Figure 5).
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Fig. 5. The Laplacian eigenvalues of a graph whose nodes are constructed
from tissue spectra (passive sensing). Note how rapidly theeigenvalues decay:
the top20 eigenvalues account for98% of the total energy. This justifies the
assumption that the spectra lie on or near a curved subspace of R

D and our
use of only the top eigenvectors for embedding.

Laplacian eigenmaps [29]–[34] allow us to study the intrin-
sic geometry of curved subspaces such as those in question
(see Figure 9). In particular we measure vectors{vi}

M
i=1 ⊂ RD

which represent spectra and lie on a low dimensional (d <<
D) manifold M. We can set up a coordinate system forM
using vectors with onlyd elements. Thus we can represent
the position of each data pointvi by only d coordinates
{wi}

M
i=1 ⊂ Rd rather thanD, which can lead to massive

savings in storage, computation and data acquisition time.
To achieve such a parametrization, consider the Laplacian

operator on the manifoldM. The idea is that thed coordinates
of point i should be the values of the topd Laplacian eigen-
vectors at pointi. One way of understanding this approach is
that it optimally preserves distances between nearby points: if
vi andvj are close together in theD dimensional space it is
desirable that their images ind dimensions remain close. In
a sense which can be made precise, the Laplacian embedding
preserves local distances as well as possible [29]. Another
way of understanding the Laplacian embedding is via heat
diffusion. Assume that the manifold conducts heat, but is
insulated from the remainder of the high dimensional space.
Consider a point source of heat located at one of the points
on the manifold. The time taken for that heat to diffuse to
other points on the manifold is related to the distances between
those points in the lowd dimensional embedding space. This
diffusion metric is robust to noisy data since heat will not
travel quickly between points on the manifold unless there are
many paths connecting them. So the creation or deletion of
some small number of paths, due to measurement noise in the
{vi}

M
i=1, will not strongly affect the distances between points

in the low d dimensional embedding space.
In order to compute the low dimensional embedding coor-

dinates of data, it is necessary to approximate the continuous
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Laplacian operator by a matrix. Define the Laplacian matrix as
L = I−A whereA = (ai,j)

M
1 andai,j = exp(−||vi−vj ||/ǫ),

before normalization. HereA is called the adjacency matrix. In
fact, we used a Laplace-Beltrami normalization [43] forL. The
advantage of that normalization is invariance to the sampling
density of the points on the manifold. Now diagonalizeL
and letwi(m) be theith coordinate of themth eigenvector
(for m = 1, . . . , d). For any particular data set, the values of
d and ǫ are not known a priori and need to be determined
experimentally.

C. Local discriminant bases

Despite the considerable savings in imaging time obtained
through use of Hadamard spectroscopy (section III-A), it
still takes 32s to acquire a hyper-spectral image of a single
biopsy. That is because Hadamard spectroscopy is intended
to capture images at all available frequencies. We show that
faster acquisition times can be obtained by only measuring
the response at those frequencies which are relevant to the
discrimination task at hand. We call this approach active
sensing which we implement using local discriminant bases
(LDB) of Coifman and Saito [20]–[22].

Given labeled sets of high dimensional training data points
the method finds a small number of directions such that pro-
jecting the data onto those directions preserves the separation
between the classes. The high dimensional training points
in question are physical spectra in this situation. Projecting
the data onto a small number of directions corresponds to
shining a small subset of the available wavelengths which have
been chosen specifically with the goal preserving separation
between classes. A classifier is then learned in the projected
lower dimensional space corresponding to the small number
of measurements made. This leads to faster image acquisition
and data-analysis times.

The search for features in high dimensional spaces is no-
toriously difficult. LDB performs dimensionality reduction by
searching sub-optimal projections among hierarchically well-
organized dictionaries of wavelet or Fourier packets. There are
fast algorithms with to perform such a search and efficiently
compute the projections onto ensembles of these patterns. We
use a version of LDB that searches arbitrary Haar packet de-
compositions. Note the LDB method is fundamentally limited
by the constraint that the projections available in its search
space come from Haar packet decompositions. Nonetheless
we find it can reduce imaging time with little subsequent loss
of classification accuracy.

IV. A LGORITHMS

A. Tissue segmentation

Since histologic changes in cell nuclei occur with the onset
of cancer, our spectral cancer discrimination algorithms work
on nuclei. In order to locate nuclei patches they begin by
segmenting the spectral measurements into three classes cor-
responding to cell nuclei, glandular cell cytoplasm and lamina
propria. The H&E stain used in slide preparation differentiates
between nuclei and other tissue components, which makes the
task tractable. The major difficulty is to achieve consistency

across different biopsies. There are significant differences
between biopsies which should be ignored, for example due
to different uptake of the stain, slightly different focus and
lighting settings in the microscope (see Figure 1).

The tissue segmentation algorithms are supervised: we label
a subset of the locations from three biopsies according to
tissue class. Given these labeled points, the algorithm assigns
a class to each unlabeled location. Measurements are made at
the labeled points in either passive, active or random sensing
mode. The measurements made are given to the algorithm in
section IV-A.2. For the results, see Figures 2, 3 and 4.

1) Measurements:
• Passive sensingThe input to the tissue segmentation

algorithm in the next section is the full spectra - that is
the response toN different wavelengths of light at each
location in the biopsies (see Figure 6).
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Fig. 6. A colon transmittance spectrum between440nm and700nm. These
measurements are used by the “passive” algorithms.

• Active sensingWe use the LDB algorithm (see section
III-C and Figure 7) to findd features that discriminate
among the full spectra of different tissue classes in the
training set. The features are optimal subject to being
the firstd vectors of a Haar packet basis forRN . These
responses of the tissue to these features (d numbers per
location in the biopsies) are subsequently classified using
the tissue segmentation algorithm in the next section.

• Random sensingWe also make onlyd spectral measure-
ments, instead ofN . However the measurements made
each consist of shining a random subset of the available
wavelengths (see Figure 8). Again, thesed measurements
per location are input into the following algorithm.

2) Algorithm: We use a nonlinear classifier that takes
advantage of the curved geometry of the measurement space
using Laplacian eigenmaps (see Figure 9 and section III-
B) as follows. SupposeI(x, y) ∈ RD is the measurement
made at a location(x, y), by either passive, active or random
sensing. LetS = {si}

25
i=1 be the measurements in a5 by

5 neighborhood about(x, y). S is used to calculatek local
statistics which capture variation near(x, y), assuming that
S contains realizations of the same random variable. The
local statistics are the topk eigenvalues{σi}

k
i=1 of the local

covariance matrix

C =
∑

(si − µ)⊤(si − µ),
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Fig. 7. Three wavelength bands carefully selected to be relevant to the task of
tissue classification (active sensing). Feature vectors used by the active sensing
algorithms consist of averages of transmittance spectra (Figure 6) over bands
such as those shown. The vectors plotted are from the LDB algorithm (see
section III-C).
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Fig. 8. The measurements used by the random sensing learningalgorithms
are sums of transmittances at randomly chosen wavelengths.

where µ is the mean spectrum ofS. Then we form the
feature vector at(x, y): f(x, y) = [µ⊤, σ1, . . . , σk]⊤ ∈ RD+k.
The feature vector is normalized by linearly mapping each
coordinate into the interval[0, 1].

The choice of a5 by 5 neighborhood is motivated by this
being small enough to fit inside most cell nuclei. The spatial
characteristics considered are at such a low scale as not to
capture information about histological structures. Essentially
they provide a very local measure of spectral variation about
a point.

The physical and biological spectral compositions can be
modeled by constraining the set of feature vectors to lie on or
near a manifoldM $ RD+k whose intrinsic dimensionality is
less thanD+k. So we construct an empirical parametrization
of the point cloud by using Laplacian eigenmaps (see section
III-B). This nonlinear map fromRD+k to Rn, which we learn
on the training spectra, is extended to all other spectra (inall
other biopsies) by the Nyström extension technique [44]–[46].
To classify a new spectrum, we compute the local spatial sta-
tistics, assemble the feature vector, apply Nyström extension to
deduce its low dimensional embedding coordinates inRn and
use a10-nearest neighbor classifier [2] in then dimensional
diffusion space.

Curvilinear 
coordinates

1

2

D

1

n

Fig. 9. Laplacian eigenmaps allow us to perform classification of data on a
curved manifold. Distances between unseen points and labeled training points
are measured in curvilinear coordinates along the manifoldrather than in the
D dimensional ambient space.

B. Classification of Nuclei

Nuclear classification can be either weakly or strongly cross
validated (see section II). That is the nuclear classifier can be
trained on all biopsies (weak) or trained on some and evaluated
on others (strong).

1) Passive and random sensing:In passive and random
sensing, once we have detected where nuclei are located, they
are classified by partial least squares regression (PLSR, see
[2], [47]–[51]). The PLSR algorithm is given full spectra for
passive sensing (128 measurements at each location) and only
16 random measurements per location for random sensing. We
use15 latent vectors in the PLSR algorithm.

2) Active sensing:In active sensing, once we have detected
where nuclei are located, we make use of a second set of
measurements which have been chosen by the LDB algorithm
(section III-C) to discriminate between normal and cancerous
nuclei. Given the measurements we run a10−nearest neigh-
bors classifier [2] to assign one of the two classes.

C. Classification of biopsies

To classify a biopsy, we collect between40 and60 nuclei.
We find that selecting spectra from near the centers of nu-
clei increases confidence that the spectra really are nucleic,
thus improving diagnostic efficiency (when cross validating
strongly). The number of nuclei selected varies from biopsyto
biopsy according to availability and confidence the algorithm
has in the locations really being nucleic. Each nucleus is
classified as in section IV-B. Each biopsy is classified as
cancerous if at least some fraction of its nuclei spectra are
classified as cancerous. It is possible to vary the sensitivity
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and specificity of our algorithms by altering that policy, for
example conservatively classifying a biopsy as cancerous if at
least10% of nuclei spectra are deemed cancerous (Figures 11
and 10).

V. EXPERIMENTS

A micro-array was obtained from the Yale Tissue micro-
array facility, containing normal and cancerous human colon
biopsies stained with H&E. Each biopsy comes from a dif-
ferent patient and biopsy preparation may vary from patient
to patient. We consider40 such biopsies:20 normal biopsies
and20 cancerous carcinomas. One of us (Dr Gustave L Davis,
M.D., a board-certified pathologist) photographed the biopsies
after confirming the diagnoses and evaluating adequacy of
each biopsy for selection.

The prototype tuned light source [35] can generate128 light
frequencies, between 440 nm and 700 nm, with a wavelength
resolution of about 6 nm. A fiber optic cable connects the
light source to a Nikon Biophot microscope. We work at
400X magnification. The instrument is flexible in that it can
transilluminate a sample with a combination of wavelengthsat
the same time. It is a prototype obtained from Plain Sights Sys-
tems Inc., Hamden, CT. Related hyper-spectral light sources
are available commercially. For example Tidal Photonics Inc.,
Vancouver, Canada [52] produces a hyper-spectral light source
that can also be configured to shine combinations of light
of different frequencies. It has been used to construct a
hyper-spectral bronchoscope in [53]. Cambridge Research and
Instrumentation Inc., Woburn, MA [54] sells a liquid crystal
tunable filter which has been used for cytological analysis of
bladder cancer in [55]. In addition Spectral Dimensions, Inc.,
Olney, MD, [56] produces microscopes equipped with hyper-
spectral light sources.

We take advantage of the flexibility to shine combinations
of light wavelengths in three different ways. In passive sensing
we acquire the image at all available wavelengths by shining
randomized Hadamard patterns which minimize the data ac-
quisition time subject to the signal to noise ratio being below a
level we choose (see section III-A for more details). In random
sensing we shine randomly chosen wavelengths (see section
IV-A.1). In active sensing we shine wavelengths which have
been chosen to be particularly relevant to the discrimination
task at hand (see section III-C) out of a Haar wavelet packet
tree.

A single data cube is collected for each biopsy. It is a set
of D images,{Ii}D

i=1. Each image has size491 by 652 pixels
which are the response of the biopsy when transilluminated
by a particular combination of wavelengths of light.

The number of measurements made (D) and number of
spatial features calculated (k) for the tissue segmentation
algorithm (section IV-A.2) are given in table I. For the tissue
segmentation stage, the active sensing algorithm is given
8 measurements which is fewer than the random sensing
algorithm which has access to16 measurements. This is in
order to make the final comparison between success rates fair.
The reason is that the random sensing method re-uses the same
random measurements twice: once for tissue segmentation

TABLE I

PARAMETERS USED IN THE ALGORITHMS(SEE IV-A.2).

acquisition mode D k n
passive 128 20 20

active 8 8 4

random 16 16 8

and again for nuclear classification. On the other hand the
active sensing method relies on being able to choose relevant
measurements for each task separately. For the task of biopsy
classification as a whole the random and active methods have
16 measurements each.

VI. RESULTS

Tables II and III show the strongly cross validated results
of the cancer recognition and tissue segmentation stages of
the algorithm, respectively. In particular, table III shows the
percentage of the locations automatically recognized as nuclei
which are indeed nuclei, as verified by a pathologist.

The algorithms described above classify a biopsy as can-
cerous if at least some fraction of its nuclei are classified as
cancerous. That fraction can be varied, to produce Figures 10
and 11, for the case of random sensing. Analogous Figures
for active and passive sensing look almost identical. These
Figures show robustness of the schemes proposed when the
threshold parameter is varied. In addition Figure 11 shows the
trade off between sensitivity and specificity. The area under
the receiver operator characteristic (ROC) curve is a measure
of robustness of a test, and must be between0 and1. For our
ROC curves this area is about0.9.
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Fig. 10. Diagnostic efficiency as a function of the thresholdfraction of
spectra. This is the fraction of nuclei from a biopsy which need to be classified
as malignant in order for the whole biopsy to be classified as malignant. Each
point on the graph is the average diagnostic efficiency over100 runs of strong
cross-validation on the data set of40 patients. The optimal threshold is0.5.

For the weakly cross validated task (testing on the same
patients as the algorithm trains on) we achieve almost perfect
results as in [6], [8] which also use weak cross validation.
Our diagnostic efficiency is99%. For the harder task of strong
cross-validation (testing on unseen patients), our tissueclas-
sification results are near100%. For strongly cross validated
cancer recognition, we achieve85% diagnostic efficiency in
passive sensing mode, that is when the algorithm has access
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TABLE II

CANCER DETECTION SUCCESS RATES

sensing mode cross validation type diagnostic efficiency (%) sensitivity (%) specificity (%) time per biopsy (s)
passive weak 99 99 100 32

passive strong 85 77 94 32

active strong 82 85 78 4

random strong 85 78 92 4

TABLE III

NUCLEI DETECTION SUCCESS RATES, STRONG CROSS VALIDATION

sensing mode success rate (%)
passive 100
active 99

random 100
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Fig. 11. Receiver operator characteristic (ROC) curve for the random sensing
algorithm. This shows the trade-off between too many false alarms versus
catching all true positives. True positive rate, or specificity, is plotted on the
y-axis as a function of1−sensitivity, or false alarm rate, on thex-axis. The
area under the ROC curve is a standard measure of robustness of a test, and
is always between0 and1. In this case it is0.9.

to all spectral bands. This requires an acquisition time of32s
per biopsy. For active and random sensing, the measurement
time per data cube falls to4s. The diagnostic efficiency only
decreases to82% for active and remains at85% for random
sensing with strong cross validation. The features chosen at
random slightly, but consistently, outperform those chosen by
LDB (active sensing).

VII. C ONCLUSIONS ANDFURTHER WORK

An example of a lower bound on the information content
is that in at least85% of cases spectral information alone
is sufficient to discriminate between normal and cancerous
biopsies. Thus the question arises as to what form this spectral
information takes. Are the entire spectra needed in order to
obtain this classification accuracy? The answer is no: using
only 16 spectral measurements are sufficient in order to obtain
that success rate.

Of the two classes of features we use, random measurements
outperform spectral band features selected by LDB (active
sensing). One might have expected the reverse since in active
sensing the algorithm makes a choice about which patterns will
be particularly helpful. On the other hand, the set of candidate
patterns that LDB (active sensing) can choose from is limited
to start with: they must be basis vectors from Haar wavelet

packets. Random sensing has no such restriction. In addition
active sensing is handicapped in that it cannot use the same
measurements twice for different tasks. The measurements
made are specific to either tissue segmentation or nuclear
classification. To make the comparison between random and
active fair, both are given access to the same number of total
measurements. Thus for each sub-task (tissue segmentation
and nuclear classification) the active algorithms have access
to fewer measurements. A priori it is not obvious which of
these methods will perform best for a particular application.
In this case the benefits of random sensing outweigh those of
active.

We have successfully designed algorithms for the dis-
crimination of normal and cancerous colon biopsies given
little more than materials in general use by pathologists. In
particular we have used H&E stained biopsies and a visible
light microscope with a hyper-spectral light source attached
to it as described in [35]. We recognize the importance of
keeping imaging times low. These relatively standard materials
and ambitious goals have necessitated the use of sophisticated
algorithms which nonetheless run on a standard desktop com-
puter. The algorithms are specifically tailored to the tasksat
hand. In this way we have achieved strongly cross validated
diagnostic efficiencies of85% which have only previously
been available with sophisticated imaging equipment, for
colon cancer [15], [39].

One problem with our method is that cancer only develops
in the glandular cells. However we use both glandular and
lamina propria cell nuclei in training the cancer recognition
algorithms (local discriminant bases and partial least squares).
The reason for this is that we have thus far been unable to tell
the difference between these two populations of cell nuclei,
automatically. In the future we hope to achieve this discrim-
ination using immunoperoxidase markers for epithelium and
leukocytes. These stains will facilitate the task of automatically
differentiating between lamina propria nuclei and glandular
nuclei.
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