Homework 6 - Due Nov. 7th
High-Dimensional Approximation, Probability, and Statistical Learning

Instructor: Mauro Maggioni
Office: 405 Krieger Hall
Web page: www.math.jhu.edu/~mauro
E-mail: myfirstname.maggioni@jhu.edu

Homework Policies. As for the first homework set.

Exercises.

Exercise 1 (60pts). Prove the following properties of the width $w(K)$ of a set K:

- $w(K)$ is finite if and only if K is bounded (i.e. it is contained in $B_2(R)$ for some $R > 0$);
- $w(\text{conv}(K)) = w(K)$, where $\text{conv}(K)$ is the convex hull of K, i.e. the smallest set containing K;
- $w(\alpha K) = |\alpha| w(K)$, where $\alpha K = \{\alpha x, \text{ for } x \in K\}$.
- if A is a rotation (more generally, a unitary, i.e. distance-preserving, linear transformation) and $t \in \mathbb{R}^n$, then $w(\alpha K + t) = w(K)$, i.e. the width is independent of affine distance-preserving transformations.

Exercise 2 (40pts). Estimate $w(B_{\infty}^R)$, the width of the unit ℓ^∞ ball in \mathbb{R}^n. You can do this in various ways, but one way is by observing that $w(B_{\infty}^R) = \mathbb{E}||\eta||_1$ (prove this, do not assume it!), with η standard Gaussian vector in \mathbb{R}^n.