Publications

Show all

2020

Lu, Fei; Maggioni, Mauro; Tang, Sui

Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories Journal Article Forthcoming

arXiv, Forthcoming.

Abstract | Links | BibTeX | Tags: agent-based models, interacting particle systems, inverse problems, Machine learning, statistics, stochastic systems

2017

Crosskey, Miles C; Maggioni, Mauro

ATLAS: A geometric approach to learning high-dimensional stochastic systems near manifolds Journal Article

Journal of Multiscale Modeling and Simulation, 15 (1), pp. 110–156, 2017, (arxiv: 1404.0667).

Links | BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, statistics, stochastic systems

2013

Crosskey, Miles C; Maggioni, Mauro

Learning of intrinsically low-dimensional stochastic systems in high-dimensions, I Technical Report

2013, (in preparation).

BibTeX | Tags: Manifold Learning, stochastic systems

2011

Zheng, W; Rohrdanz, M A; Maggioni, Mauro; Clementi, Cecilia

Polymer reversal rate calculated via locally scaled diffusion map Journal Article

J. Chem. Phys., (134), pp. 144108, 2011.

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, molecular dynamics, stochastic systems

Rohrdanz, M A; Zheng, W; Maggioni, Mauro; Clementi, Cecilia

Determination of reaction coordinates via locally scaled diffusion map Journal Article

J. Chem. Phys., (134), pp. 124116, 2011.

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, molecular dynamics, stochastic systems

2008

Coifman, Ronald R; Kevrekidis, Ioannis G; Lafon, Stephane; Maggioni, Mauro; Nadler, Boaz

Diffusion Maps, reduction coordinates and low dimensional representation of stochastic systems Journal Article

SIAM J.M.M.S., 7 (2), pp. 842–864, 2008.

BibTeX | Tags: diffusion geometry, dynamical systems, Laplacian eigenfunctions, Machine learning, model reduction, stochastic systems

2007

Coifman, Ronald R; Maggioni, Mauro

Multiscale Data Analysis with Diffusion Wavelets Journal Article

Proc. SIAM Bioinf. Workshop, Minneapolis, 2007.

BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems

2006

Coifman, Ronald R; Maggioni, Mauro

Diffusion Wavelets Journal Article

Appl. Comp. Harm. Anal., 21 (1), pp. 53–94, 2006, ((Tech. Rep. YALE/DCS/TR-1303, Yale Univ., Sep. 2004)).

BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems

Bremer, James Jr. C; Coifman, Ronald R; Maggioni, Mauro; Szlam, Arthur D

Diffusion Wavelet Packets Journal Article

Appl. Comp. Harm. Anal., 21 (1), pp. 95–112, 2006, ((Tech. Rep. YALE/DCS/TR-1304, 2004)).

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems

Coifman, Ronald R; Lafon, Stephane; Maggioni, Mauro; Keller, Y; Szlam, A D; Warner, F J; Zucker, S W

Geometries of sensor outputs, inference, and information processing Inproceedings

Athale, John Zolper; Eds. Intelligent Integrated Microsystems; Ravindra C A (Ed.): Proc. SPIE, pp. 623209, 2006.

BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems

2005

Coifman, Ronald R; Maggioni, Mauro; Zucker, Steven W; Kevrekidis, Ioannis G

Geometric diffusions for the analysis of data from sensor networks Journal Article

Curr Opin Neurobiol, 15 (5), pp. 576–84, 2005.

BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems

Coifman, Ronald R; Lafon, Stephane; Lee, Ann B; Maggioni, Mauro; Nadler, B; Warner, Frederick; Zucker, Steven W

Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps Journal Article

Proceedings of the National Academy of Sciences of the United States of America, 102 (21), pp. 7426-7431, 2005.

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems

Coifman, Ronald R; Lafon, S; Lee, A B; Maggioni, Mauro; Nadler, B; Warner, Frederick; Zucker, Steven W

Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods Journal Article

Proceedings of the National Academy of Sciences of the United States of America, 102 (21), pp. 7432–7438, 2005.

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems

2004

Coifman, Ronald R; Maggioni, Mauro

Multiresolution Analysis associated to diffusion semigroups: construction and fast algorithms Technical Report

Dept. Comp. Sci., Yale University (YALE/DCS/TR-1289), 2004.

BibTeX | Tags: diffusion geometry, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems

Designed and hosted by Prisma Analytics Inc.