2007 |
Coifman, Ronald R; Maggioni, Mauro Multiscale Data Analysis with Diffusion Wavelets Journal Article Proc. SIAM Bioinf. Workshop, Minneapolis, 2007. BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems @article{CM:MsDataDiffWavelets, title = {Multiscale Data Analysis with Diffusion Wavelets}, author = {Ronald R Coifman and Mauro Maggioni}, year = {2007}, date = {2007-04-01}, journal = {Proc. SIAM Bioinf. Workshop, Minneapolis}, keywords = {diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems}, pubstate = {published}, tppubtype = {article} } |
2006 |
Coifman, Ronald R; Maggioni, Mauro Diffusion Wavelets Journal Article Appl. Comp. Harm. Anal., 21 (1), pp. 53–94, 2006, ((Tech. Rep. YALE/DCS/TR-1303, Yale Univ., Sep. 2004)). BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems @article{CMDiffusionWavelets, title = {Diffusion Wavelets}, author = {Ronald R Coifman and Mauro Maggioni}, year = {2006}, date = {2006-07-01}, journal = {Appl. Comp. Harm. Anal.}, volume = {21}, number = {1}, pages = {53–94}, note = {(Tech. Rep. YALE/DCS/TR-1303, Yale Univ., Sep. 2004)}, keywords = {diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory, stochastic systems}, pubstate = {published}, tppubtype = {article} } |
2005 |
Mahadevan, Sridhar; Maggioni, Mauro Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions Inproceedings University of Massachusetts, Department of Computer Science Technical Report TR-2005-38; Proc. NIPS 2005, 2005. BibTeX | Tags: diffusion geometry, diffusion wavelets, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory @inproceedings{smmm:ValueFunction, title = {Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions}, author = {Sridhar Mahadevan and Mauro Maggioni}, year = {2005}, date = {2005-01-01}, booktitle = {University of Massachusetts, Department of Computer Science Technical Report TR-2005-38; Proc. NIPS 2005}, keywords = {diffusion geometry, diffusion wavelets, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory}, pubstate = {published}, tppubtype = {inproceedings} } |
Maggioni, Mauro; Bremer, James Jr. C; Coifman, Ronald R; Szlam, Arthur D Biorthogonal diffusion wavelets for multiscale representations on manifolds and graphs Conference 5914 (1), SPIE, San Diego, CA, USA, 2005. Links | BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory @conference{MBCS:BiorthogonalDiffusionWavelets, title = {Biorthogonal diffusion wavelets for multiscale representations on manifolds and graphs}, author = {Mauro Maggioni and James Jr. C Bremer and Ronald R Coifman and Arthur D Szlam}, editor = {Manos Papadakis and Andrew F Laine and Michael A Unser}, url = {http://link.aip.org/link/?PSI/5914/59141M/1}, year = {2005}, date = {2005-01-01}, journal = {Wavelets XI}, volume = {5914}, number = {1}, pages = {59141M}, publisher = {SPIE}, address = {San Diego, CA, USA}, keywords = {diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory}, pubstate = {published}, tppubtype = {conference} } |
Szlam, Arthur D; Maggioni, Mauro; Coifman, Ronald R; Bremer, James Jr. C Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions Conference 5914-1 , SPIE, San Diego, CA, USA, 2005. Links | BibTeX | Tags: diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory @conference{MSCB:MultiscaleManifoldMethods, title = {Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions}, author = {Arthur D Szlam and Mauro Maggioni and Ronald R Coifman and James Jr. C Bremer}, editor = {Manos Papadakis and Andrew F Laine and Michael A Unser}, url = {http://link.aip.org/link/?PSI/5914/59141D/1}, year = {2005}, date = {2005-01-01}, journal = {Wavelets XI}, volume = {5914-1}, pages = {59141D}, publisher = {SPIE}, address = {San Diego, CA, USA}, keywords = {diffusion geometry, diffusion wavelets, Machine learning, Manifold Learning, multiscale analysis, random walks, spectral graph theory}, pubstate = {published}, tppubtype = {conference} } |
- Lectures at Summer School at Peking University, July 2017.
- PCMI Lectures, Summer 2016: Lecture 1, Lecture 2, Problems/discussion points
- Google Scholar
- Papers on the ArXiv
- Papers on MathsciNet
- Tutorials on diffusion geometry and multiscale analysis on graphs at the MRA Internet Program at IPAM: Part I and Part II.
- Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets, IPAM, Multiscale Geometric Analysis Program, Fall 2004.
- Diffusion Geometries, global and multiscale, IPAM, 2005.