2024
Loeffler, Shane E.; Ahmad, Zan; Ali, Syed Yusuf; Yamamoto, Carolyna; Popescu, Dan M.; Yee, Alana; Lal, Yash; Trayanova, Natalia; Maggioni, Mauro
2024.
Abstract | Links | BibTeX | Tags: digital twins, Laplacian eigenfunctions, neural networks, PDEs, precision medicine
@conference{nokey,
title = {Graph Fourier Neural Kernels (G-FuNK): Learning Solutions of Nonlinear Diffusive Parametric PDEs on Multiple Domains},
author = {Shane E. Loeffler and Zan Ahmad and Syed Yusuf Ali and Carolyna Yamamoto and Dan M. Popescu and Alana Yee and Yash Lal and Natalia Trayanova and Mauro Maggioni},
url = {https://doi.org/10.48550/arXiv.2410.04655},
year = {2024},
date = {2024-10-09},
urldate = {2024-10-09},
abstract = {Predicting time-dependent dynamics of complex systems governed by non-linear partial differential equations (PDEs) with varying parameters and domains is a challenging task motivated by applications across various fields. We introduce a novel family of neural operators based on our Graph Fourier Neural Kernels, designed to learn solution generators for nonlinear PDEs in which the highest-order term is diffusive, across multiple domains and parameters. G-FuNK combines components that are parameter- and domain-adapted with others that are not. The domain-adapted components are constructed using a weighted graph on the discretized domain, where the graph Laplacian approximates the highest-order diffusive term, ensuring boundary condition compliance and capturing the parameter and domain-specific behavior. Meanwhile, the learned components transfer across domains and parameters using our variant Fourier Neural Operators. This approach naturally embeds geometric and directional information, improving generalization to new test domains without need for retraining the network. To handle temporal dynamics, our method incorporates an integrated ODE solver to predict the evolution of the system. Experiments show G-FuNK's capability to accurately approximate heat, reaction diffusion, and cardiac electrophysiology equations across various geometries and anisotropic diffusivity fields. G-FuNK achieves low relative errors on unseen domains and fiber fields, significantly accelerating predictions compared to traditional finite-element solvers.},
keywords = {digital twins, Laplacian eigenfunctions, neural networks, PDEs, precision medicine},
pubstate = {published},
tppubtype = {conference}
}
2020
Okada, David Jason Miller; Jonathan Chrispin; Adityo Prakosa; Natalia Trayanova; Steven Jones; Mauro Maggioni; Katherine Wu R ; C David R.
Substrate Spatial Complexity Analysis for the Prediction of Ventricular Arrhythmias in Patients with Ischemic Cardiomyopathy Journal Article
In: Circulation: Arrhythmia and Electrophysiology, 2020.
Links | BibTeX | Tags: imaging, Laplacian eigenfunctions, medical imaging
@article{SpatialComplexity1,
title = {Substrate Spatial Complexity Analysis for the Prediction of Ventricular Arrhythmias in Patients with Ischemic Cardiomyopathy},
author = {David Jason Miller; Jonathan Chrispin; Adityo Prakosa; Natalia Trayanova; Steven Jones; Mauro Maggioni; Katherine Wu R ; C David R. Okada},
url = {https://www.ahajournals.org/doi/epub/10.1161/CIRCEP.119.007975},
year = {2020},
date = {2020-01-01},
journal = {Circulation: Arrhythmia and Electrophysiology},
keywords = {imaging, Laplacian eigenfunctions, medical imaging},
pubstate = {published},
tppubtype = {article}
}
2010
Jones, Peter W; Maggioni, Mauro; Schul, Raanan
Universal local manifold parametrizations via heat kernels and eigenfunctions of the Laplacian Journal Article
In: Ann. Acad. Scient. Fen., vol. 35, pp. 1–44, 2010, (http://arxiv.org/abs/0709.1975).
BibTeX | Tags: diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory
@article{jms:UniformizationEigenfunctions2,
title = {Universal local manifold parametrizations via heat kernels and eigenfunctions of the Laplacian},
author = {Peter W Jones and Mauro Maggioni and Raanan Schul},
year = {2010},
date = {2010-01-01},
journal = {Ann. Acad. Scient. Fen.},
volume = {35},
pages = {1--44},
note = {http://arxiv.org/abs/0709.1975},
keywords = {diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory},
pubstate = {published},
tppubtype = {article}
}
2008
Coifman, Ronald R; Maggioni, Mauro
Geometry Analysis and Signal Processing on Digital Data, Emergent Structures, and Knowledge Building Miscellaneous
SIAM News, 2008.
BibTeX | Tags: diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory
@misc{CM:SiamNews,
title = {Geometry Analysis and Signal Processing on Digital Data, Emergent Structures, and Knowledge Building},
author = {Ronald R Coifman and Mauro Maggioni},
year = {2008},
date = {2008-11-01},
howpublished = {SIAM News},
keywords = {diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory},
pubstate = {published},
tppubtype = {misc}
}
Maggioni, Mauro; Mhaskar, Hrushikesh
Diffusion polynomial frames on metric measure spaces Journal Article
In: ACHA, vol. 3, pp. 329–353, 2008.
BibTeX | Tags: approximation theory, diffusion geometry, heat kernels, Laplacian eigenfunctions, multiscale analysis
@article{MM:DiffusionPolynomialFrames,
title = {Diffusion polynomial frames on metric measure spaces},
author = {Mauro Maggioni and Hrushikesh Mhaskar},
year = {2008},
date = {2008-05-01},
journal = {ACHA},
volume = {3},
pages = {329--353},
keywords = {approximation theory, diffusion geometry, heat kernels, Laplacian eigenfunctions, multiscale analysis},
pubstate = {published},
tppubtype = {article}
}
Jones, Peter W; Maggioni, Mauro; Schul, Raanan
Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels Journal Article
In: Proc. Nat. Acad. Sci., vol. 105, no. 6, pp. 1803–1808, 2008.
BibTeX | Tags: diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory
@article{jms:UniformizationEigenfunctions,
title = {Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels},
author = {Peter W Jones and Mauro Maggioni and Raanan Schul},
year = {2008},
date = {2008-02-01},
journal = {Proc. Nat. Acad. Sci.},
volume = {105},
number = {6},
pages = {1803--1808},
keywords = {diffusion geometry, heat kernels, Laplacian eigenfunctions, Manifold Learning, multiscale analysis, random walks, spectral graph theory},
pubstate = {published},
tppubtype = {article}
}
Coifman, Ronald R; Kevrekidis, Ioannis G; Lafon, Stephane; Maggioni, Mauro; Nadler, Boaz
Diffusion Maps, reduction coordinates and low dimensional representation of stochastic systems Journal Article
In: SIAM J.M.M.S., vol. 7, no. 2, pp. 842–864, 2008.
BibTeX | Tags: diffusion geometry, dynamical systems, Laplacian eigenfunctions, Machine learning, model reduction, stochastic systems
@article{CKLMN:DiffusionMapsReductionCoordinates,
title = {Diffusion Maps, reduction coordinates and low dimensional representation of stochastic systems},
author = {Ronald R Coifman and Ioannis G Kevrekidis and Stephane Lafon and Mauro Maggioni and Boaz Nadler},
year = {2008},
date = {2008-01-01},
journal = {SIAM J.M.M.S.},
volume = {7},
number = {2},
pages = {842--864},
keywords = {diffusion geometry, dynamical systems, Laplacian eigenfunctions, Machine learning, model reduction, stochastic systems},
pubstate = {published},
tppubtype = {article}
}
2007
Mahadevan, Sridhar; Maggioni, Mauro
Proto-value Functions: A Spectral Framework for Solving Markov Decision Processes Journal Article
In: JMLR, vol. 8, pp. 2169–2231, 2007.
BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory
@article{smmm:jmrl1,
title = {Proto-value Functions: A Spectral Framework for Solving Markov Decision Processes},
author = {Sridhar Mahadevan and Mauro Maggioni},
year = {2007},
date = {2007-01-01},
journal = {JMLR},
volume = {8},
pages = {2169--2231},
keywords = {diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory},
pubstate = {published},
tppubtype = {article}
}
2006
Coifman, Ronald R; Lafon, Stephane; Maggioni, Mauro; Keller, Y; Szlam, A D; Warner, F J; Zucker, S W
Geometries of sensor outputs, inference, and information processing Proceedings Article
In: Athale, John Zolper; Eds. C Intelligent Integrated Microsystems; Ravindra A. (Ed.): Proc. SPIE, pp. 623209, 2006.
BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems
@inproceedings{CLMKSWZ:GeometrySensorOutputs,
title = {Geometries of sensor outputs, inference, and information processing},
author = {Ronald R Coifman and Stephane Lafon and Mauro Maggioni and Y Keller and A D Szlam and F J Warner and S W Zucker},
editor = {John Zolper; Eds. C Intelligent Integrated Microsystems; Ravindra A. Athale},
year = {2006},
date = {2006-05-01},
booktitle = {Proc. SPIE},
volume = {6232},
pages = {623209},
keywords = {diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems},
pubstate = {published},
tppubtype = {inproceedings}
}
Maggioni, Mauro; Mahadevan, Sridhar
Fast Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Processes Proceedings Article
In: ICML 2006, pp. 601–608, 2006.
BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory
@inproceedings{smmm:FastDirectMDP,
title = {Fast Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Processes},
author = {Mauro Maggioni and Sridhar Mahadevan},
year = {2006},
date = {2006-01-01},
booktitle = {ICML 2006},
pages = {601--608},
keywords = {diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory},
pubstate = {published},
tppubtype = {inproceedings}
}
Mahadevan, Sridhar; Ferguson, Kim; Osentoski, Sarah; Maggioni, Mauro
Simultaneous Learning of Representation and Control In Continuous Domains Proceedings Article
In: AAAI, AAAI Press, 2006.
BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory
@inproceedings{smkfsomm:SimLearningReprControlContinuous,
title = {Simultaneous Learning of Representation and Control In Continuous Domains},
author = {Sridhar Mahadevan and Kim Ferguson and Sarah Osentoski and Mauro Maggioni},
year = {2006},
date = {2006-01-01},
booktitle = {AAAI},
publisher = {AAAI Press},
keywords = {diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory},
pubstate = {published},
tppubtype = {inproceedings}
}
2005
Coifman, Ronald R; Maggioni, Mauro; Zucker, Steven W; Kevrekidis, Ioannis G
Geometric diffusions for the analysis of data from sensor networks Journal Article
In: Curr Opin Neurobiol, vol. 15, no. 5, pp. 576–84, 2005.
BibTeX | Tags: diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems
@article{CMZK:CONB,
title = {Geometric diffusions for the analysis of data from sensor networks},
author = {Ronald R Coifman and Mauro Maggioni and Steven W Zucker and Ioannis G Kevrekidis},
year = {2005},
date = {2005-10-01},
journal = {Curr Opin Neurobiol},
volume = {15},
number = {5},
pages = {576--84},
keywords = {diffusion geometry, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, spectral graph theory, stochastic systems},
pubstate = {published},
tppubtype = {article}
}
Mahadevan, Sridhar; Maggioni, Mauro
Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions Proceedings Article
In: University of Massachusetts, Department of Computer Science Technical Report TR-2005-38; Proc. NIPS 2005, 2005.
BibTeX | Tags: diffusion geometry, diffusion wavelets, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory
@inproceedings{smmm:ValueFunction,
title = {Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions},
author = {Sridhar Mahadevan and Mauro Maggioni},
year = {2005},
date = {2005-01-01},
booktitle = {University of Massachusetts, Department of Computer Science Technical Report TR-2005-38; Proc. NIPS 2005},
keywords = {diffusion geometry, diffusion wavelets, Laplacian eigenfunctions, Machine learning, Manifold Learning, random walks, reinforcement learning, representation learning, spectral graph theory},
pubstate = {published},
tppubtype = {inproceedings}
}
- Lectures at Summer School at Peking University, July 2017.
- PCMI Lectures, Summer 2016: Lecture 1, Lecture 2, Problems/discussion points
- Google Scholar
- Papers on the ArXiv
- Papers on MathsciNet
- Tutorials on diffusion geometry and multiscale analysis on graphs at the MRA Internet Program at IPAM: Part I and Part II.
- Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets, IPAM, Multiscale Geometric Analysis Program, Fall 2004.
- Diffusion Geometries, global and multiscale, IPAM, 2005.